Part Number Hot Search : 
CY7C0 MC100 CY7C109 TFS112H LX803DE SMBJ45 SKY87006 TEA5580
Product Description
Full Text Search
 

To Download MAX4220 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the max4212/max4213 single, max4216 dual, max4218 triple, and MAX4220 quad op amps are unity-gain-stable devices that combine high-speed per- formance with rail-to-rail outputs. the max4213/ max4218 have a disable feature that reduces power- supply current to 400? and places the outputs into a high-impedance state. these devices operate from a 3.3v to 10v single supply or from ?.65v to ?v dual supplies. the common-mode input voltage range extends beyond the negative power-supply rail (ground in single-supply applications). these devices require only 5.5ma of quiescent supply current while achieving a 300mhz -3db bandwidth and a 600v/? slew rate. input-voltage noise is only 10nv/ hz and input-current noise is only 1.3pa/ hz for either the inverting or noninverting input. these parts are an excellent solution in low-power/low-voltage sys- tems that require wide bandwidth, such as video, com- munications, and instrumentation. in addition, when disabled, their high-output impedance makes them ideal for multiplexing applications. the max4212 comes in a miniature 5-pin sot23 pack- age, while the max4213/max4216 come in 8-pin ?ax and so packages. the max4218/MAX4220 are available in space-saving 16-pin qsop and 14-pin so packages. applications battery-powered instruments video line driver analog-to-digital converter interface ccd imaging systems video routing and switching systems features high speed: 300mhz -3db bandwidth (max4212/max4213) 200mhz -3db bandwidth (max4216/max4218/MAX4220) 50mhz 0.1db gain flatness (max4212/max4213) 600v/s slew rate single 3.3v/5.0v operation rail-to-rail outputs input common-mode range extends beyond v ee low differential gain/phase: 0.02%/0.02 low distortion at 5mhz: -78dbc sfdr -75db total harmonic distortion high-output drive: 100ma 400a shutdown capability (max4213/max4218) high-output impedance in off state (max4213/max4218) space-saving sot23, max, or qsop packages max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable ________________________________________________________________ maxim integrated products 1 v ee in- in+ 1 5 v cc out max4212 sot23-5 top view 2 3 4 out n.c. v ee 1 2 8 7 en v cc in- in+ n.c. max/so 3 4 6 5 max4213 pin configurations r o 50 ? in v out z o = 50 ? unity-gain line driver (r l = r o + r to ) r f 24 ? r to 50 ? r tin 50 ? max4212 typical operating circuit 19-1178; rev 3; 10/03 evaluation kit manual available ordering information ordering information continued at end of data sheet. pin configurations continued at end of data sheet. rail-to-rail is a registered trademark of nippon motorola, ltd. for pricing, delivery, and ordering information, please contact maxim/dallas direct! at 1-888-629-4642, or visit maxim? website at www.maxim-ic.com. part temp range pin package top mark max4212 euk-t -40 c to +85 c 5 sot23-5 abaf max4213 esa -40 c to +85 c 8 so max4213eua -40 c to +85 c 8 max
max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable 2 _______________________________________________________________________________________ absolute maximum ratings dc electrical characteristics (v cc = 5v, v ee = 0, en_ = 5v, r l = 2k ? to v cc /2, v out = v cc /2, t a = t min to t max , unless otherwise noted. typical values are at t a = +25 c.) supply voltage (v cc to v ee ) ..................................................12v in_-, in_+, out_, en_ .....................(v ee - 0.3v) to (v cc + 0.3v) output short-circuit duration to v cc or v ee ............. continuous continuous power dissipation (t a = +70 c) 5-pin sot23 (derate 7.1mw/ c above +70 c) ...........571mw 8-pin so (derate 5.9mw/ c above +70 c) .................471mw 8-pin max (derate 4.5mw/ c above +70 c) ............221mw 14-pin so (derate 8.3mw/ c above +70 c) ...............667mw 16-pin qsop (derate 8.3mw/ c above +70 c) ..........667mw operating temperature range ...........................-40 c to +85 c storage temperature range .............................-65 c to +150 c lead temperature (soldering, 10s) .................................+300 c stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress ratin gs only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifica tions is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. v ol - v ee v cc - v oh v ol - v ee v cc - v oh v ol - v ee v cc - v oh v ol - v ee v cc - v oh 0.60 0.70 r l = 50 ? 0.30 0.50 0.30 0.50 r l = 150 ? 0.06 0.20 0.06 0.20 r l = 2k ? 0.05 output voltage swing v out v 0.05 r l = 10k ? 57 1.0v v out 4v, r l = 50 ? 52 59 0.5v v out 4.5v, r l = 150 ? 55 61 0.25v v out 4.75v, r l = 2k ? 3 m ? common mode (-0.2v v cm +2.75v) 49 max42_ _es_, max42_ _eee parameter symbol min typ max units input resistance r in 70 k ? input offset current i os 0.1 4.0 a input bias current i b 5.4 20 a input offset voltage matching 1 mv common-mode rejection ratio cmrr 70 100 db open-loop gain (note 1) a vol db input offset voltage (note 1) input common-mode voltage range v cm v ee -v cc - 0.20 2.25 v v os 412 mv input offset voltage temperature coefficient tc vos 8 v/ c conditions differential mode (-1v v in +1v) (note 1) (note 1) any channels for max4216/max4218/ MAX4220 (v ee - 0.2v) v cm (v cc - 2.25v) guaranteed by cmrr test max4212euk, max421_eua
max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable _______________________________________________________________________________________ 3 dc electrical characteristics (continued) (v cc = 5v, v ee = 0, en_ = 5v, r l = 2k ? to v cc /2, v out = v cc /2, t a = t min to t max , unless otherwise noted. typical values are at t a = +25 c.) en_ = 0 en_ logic input low current i il 200 400 a (v ee + 0.2v) en_ v cc output current i out ma t a = +25 c 0.40 0.65 disabled (en_ = 0) quiescent supply current (per amplifier) i s 5.5 7.0 ma enabled en_ logic input high current i ih 0.5 10 a en_ = 5v 0.5 en_ logic-high threshold v ih v cc - 1.6 v en_ logic-low threshold v il v cc - 2.6 v disabled output resistance r out (off) 20 35 k ? en_ = 0, 0 v out 5v (note 3) 45 v cc = 3.3v, v ee = 0, v cm = 0.90v parameter symbol min typ max units operating supply-voltage range v s 3.15 11.0 v 54 66 power-supply rejection ratio (note 2) psrr 46 57 db output short-circuit current i sc 150 ma open-loop output resistance r out 8 ? v cc to v ee v cc = 5v, v ee = -5v, v cm = 0 v cc = 5v, v ee = 0, v cm = 2.0v sinking or sourcing t a = t min to t max 60 70 120 conditions r l = 20 ? to v cc or v ee
max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable 4 _______________________________________________________________________________________ note 1: tested with v cm = 2.5v. note 2: psr for single 5v supply tested with v ee = 0, v cc = 4.5v to 5.5v; for dual 5v supply with v ee = -4.5v to -5.5v, v cc = 4.5v to 5.5v; and for single 3.3v supply with v ee = 0, v cc = 3.15v to 3.45v. note 3: does not include the external feedback network s impedance. ac electrical characteristics (v cc = 5v, v ee = 0, v cm = 2.5v, en_ = 5v, r f = 24 ? , r l = 100 ? to v cc /2, v out = v cc /2, a vcl = +1, t a = +25 c, unless otherwise noted.) max4216/max4218/MAX4220, f = 10mhz, v ou t = 2v p-p db -95 x talk amplifier crosstalk max4216/max4218/MAX4220, f = 10mhz, v out = 20mv p-p db 0.1 amplifier gain matching s 1 t off amplifier disable time f c = 5mhz, v out = 2v p-p dbc -78 sfdr spurious-free dynamic range total harmonic distortion 3rd harmonic 2nd harmonic max4216/max4218/ MAX4220 max4212/max4213 max4216/max4218/ MAX4220 max4212/max4213 f = 10mhz en_ = 0 f = 10khz f = 10khz v out = 20mv p-p ntsc, r l = 150 ? ntsc, r l = 150 ? f c = 10mhz, a vcl = 2 f c = 5mhz, v out = 2v p-p v out = 100mv p-p f1 = 10.0mhz, f2 = 10.1mhz, v out = 1v p-p v out = 2v step v out = 2v step v out = 2v p-p v out = 20mv p-p conditions ns 100 t on amplifier enable time ? 6 z out output impedance pf 2 c out (off) disabled output capacitance pf 1 c in input capacitance pa/ hz 1.3 i n input noise-current density nv/ hz 10 e n input noise-voltage density % 0.02 dg differential gain error degrees 0.02 dp differential phase error dbm 11 input 1db compression point dbc 35 ip3 two-tone, third-order intermodulation distortion db -75 -82 hd harmonic distortion 200 mhz 300 bw ss small-signal -3db bandwidth dbc -78 ns 1 t r , t f rise/fall time ns 45 t s settling time to 0.1% v/s 600 sr slew rate mhz 180 bw ls large-signal -3db bandwidth mhz 50 bw 0.1db bandwidth for 0.1db gain flatness 35 units min typ max symbol parameter
max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable _______________________________________________________________________________________ 5 4 -6 100k 1m 10m 100m 1g max4212/max4213 small-signal gain vs. frequency -4 max4212/3/6/8/20-01 frequency (hz) gain (db) -2 0 2 3 -5 -3 -1 1 v out = 20mv p-p 3 -7 100k 1m 10m 100m 1g max4216/max4218/MAX4220 small-signal gain vs. frequency -5 max4212/3/6/8/20-02 frequency (hz) gain (db) -3 -1 1 2 -6 -4 -2 0 v out = 20mv p-p 9 -1 100k 1m 10m 100m 1g max4212/max4213 small-signal gain vs. frequency 1 max4212/3/6/8/20-03 frequency (hz) gain (db) 3 5 7 8 0 2 4 6 a vcl = 2 v out = 20mv p-p 9 -1 100k 1m 10m 100m 1g max4216/max4218/MAX4220 small-signal gain vs. frequency 1 max4212/3/6/8/20-04 frequency (hz) gain (db) 3 5 7 8 0 2 4 6 a vcl = 2 v out = 20mv p-p 0.5 -0.5 0.1m 1m 10m 100m 1g max4216/max4218/MAX4220 gain flatness vs. frequency -0.3 max4212/3/6/8/20-07 frequency (hz) gain (db) -0.1 0.1 0.3 0.4 -0.4 -0.2 0 0.2 4 -6 100k 1m 10m 100m 1g large-signal gain vs. frequency -4 max4212/3/6/8/20-05 frequency (hz) gain (db) -2 0 2 3 -5 -3 -1 1 v out = 2v p-p v out bias = 1.75v 0.7 -0.3 0.1m 1m 10m 100m 1g max4212/max4213 gain flatness vs. frequency -0.1 max4212/3/6/8/20-06 frequency (hz) gain (db) 0.1 0.3 0.5 0.6 -0.2 0 0.2 0.4 50 -150 100k 1m 10m 100m 1g max4216/max4218/MAX4220 crosstalk vs. frequency -110 max4212/3/6/8/20-08 frequency ( hz ) crosstalk (db) -70 -30 10 30 -130 -90 -50 -10 1000 0.1 0.1m 1m 10m 100m closed-loop output impedance vs. frequency max4212/3/6/8/20-09 frequency ( hz ) impedance ( ? ) 100 1 10 __________________________________________typical operating characteristics (v cc = 5v, v ee = 0, a vcl = 1, r f = 24 ? , r l = 100 ? to v cc /2, t a = +25 c, unless otherwise noted.)
max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable 6 _______________________________________________________________________________________ 0 -100 100k 1m 10m 100m harmonic distortion vs. frequency (a vcl = 1) -80 max4212/3/6/8/20-10 frequency (hz) harmonic distortion (dbc) -60 -40 -20 -10 -90 -70 -50 -30 v out = 2v p-p 2nd harmonic 3rd harmonic 0 -100 100k 1m 10m 100m harmonic distortion vs. frequency (a vcl = 2) -80 max4212/3/6/8/20-11 frequency (hz) harmonic distortion (dbc) -60 -40 -20 -10 -90 -70 -50 -30 v out = 2v p-p a vcl = 2 2nd harmonic 3rd harmonic 0 -100 100k 1m 10m 100m harmonic distortion vs. frequency (a vcl = 5) -80 max4212/3/6/8/20-12 frequency (hz) harmonic distortion (dbc) -60 -40 -20 -10 -90 -70 -50 -30 v out = 2v p-p a vcl = 5 2nd harmonic 3rd harmonic 0 -10 -20 -30 -60 -70 -90 -80 -40 -50 -100 max4212/3/6/8/20-13 load ( ?) 0 200 400 600 800 1000 harmonic distortion vs. load harmonic distortion (dbc) f = 5mhz v out = 2v p-p 3rd harmonic 2nd harmonic 0 -100 100k 1m 10m 100m common-mode rejection vs. frequency -80 max4212/3/6/8/20-16 frequency (hz) cmr (db) -60 -40 -20 -10 -90 -70 -50 -30 0 -10 -20 -30 -60 -70 -90 -80 -40 -50 -100 max4212/3/6/8/20-14 output swing (v p-p ) 0.5 1.0 1.5 2.0 harmonic distortion vs. output swing harmonic distortion (dbc) f o = 5mhz 3rd harmonic 2nd harmonic -0.01 0 100 0 100 differential gain and phase -0.01 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 ire ire diff. phase (deg) diff. gain (%) max4212/3/6/8/20-15 v cm = 1.35v v cm = 1.35v 20 -80 100k 1m 10m 100m power-supply rejection vs. frequency -60 max4212/3/6/8/20-17 frequency (hz) power-supply rejection (db) -40 -20 0 10 -70 -50 -30 -10 4.5 4.0 3.5 2.5 2.0 1.5 3.0 1.0 max4212/3/6/8/20-18 load resistance ( ? ) 25 50 75 100 125 150 output swing vs. load resistance (r l ) output swing (vp-p) a vcl = 2 ____________________________typical operating characteristics (continued) (v cc = 5v, v ee = 0, a vcl = 1, r f = 24 ? , r l = 100 ? to v cc /2, t a = +25 c, unless otherwise noted.)
max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable _______________________________________________________________________________________ 7 in (50mv/ div) out (25mv/ div) voltage small-signal pulse response (a vcl = 1) max4212/3/6/8/20-19 20ns/div v cm = 2.5v, r l = 100 ? to ground in (25mv/ div) out (25mv/ div) voltage small-signal pulse response (a vcl = 2) max4212/3/6/8/20-20 20ns/div v cm = 1.25v, r l = 100 ? to ground in (50mv/ div) out (25mv/ div) voltage small-signal pulse response (c l = 5pf, a vcl = 1) max4212/3/6/8/20-21 20ns/div v cm = 1.75v, r l = 100 ? to ground in (1v/div) out (1v/div) voltage large-signal pulse response (a vcl = 1) max4212/3/6/8/20-22 20ns/div v cm = 1.75v, r l = 100 ? to ground 100 10 1 1 10 1k 10m 1m max4213 voltage-noise density vs. frequency max4212/3/6/8/20-25 frequency (hz) noise (nv/ hz) 100 10k 100k in (500mv/ div) out (500mv/ div) voltage large-signal pulse response (a vcl = 2) max4212/3/6/8/20-23 20ns/div v cm = 0.9v, r l = 100 ? to ground in (1v/ div) out (500mv/ div) voltage large-signal pulse response (c l = 5pf, a vcl = 2) max4212/3/6/8/20-24 20ns/div v cm = 1.75v, r l = 100 ? to ground 10 1 1 10 1k 10m 1m max4218 current-noise density vs. frequency max4212/3/6/8/20-26 frequency (hz) noise (pa/ hz) 100 10k 100k en_ 5.0v (enable) 0 (disable) 1v 0 out enable response time max4212/3/6/8/20-27 1 s/div v in = 1.0v ____________________________typical operating characteristics (continued) (v cc = 5v, v ee = 0, a vcl = 1, r f = 24 ? , r l = 100 ? to v cc /2, t a = +25 c, unless otherwise noted.)
max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable 8 _______________________________________________________________________________________ 70 50 60 40 30 20 max4212/3/6/8/20-28 load resistance ( ?) 0 200 400 600 800 1k open-loop gain vs. load resistance open-loop gain (db) 400 350 300 250 150 50 100 200 0 max4212/3/6/8/20-29 load resistance ( ? ) 100 0 200 500 400 300 600 closed-loop bandwidth vs. load resistance closed-loop bandwidth (mhz) 10 -90 100k 10m 100m 1m off-isolation vs. frequency -80 max4212/3/6/8/20-30 frequency (hz) off-isolation (db) -70 -60 -50 -40 -30 -20 -10 0 7 6 4 5 3 max4212/3/6/8/20-31 temperature (?) -25 -50 0 75 50 25 100 power-supply current vs. temperature power-supply current (ma) 10 8 6 4 2 0 max4212/3/6/8/20-34 power-supply voltage (v) 4 3 567891011 power-supply current vs. power-supply voltage power-supply current (ma) 6.0 5.5 4.5 5.0 4.0 max4212/3/6/8/20-32 temperature ( c) -25 -50 0 75 50 25 100 input bias current vs. temperature input bias current ( a) 0.20 0.16 0.12 0.04 0.08 0 max4212/3/6/8/20-33 temperature ( c) -25 -50 0 75 50 25 100 input offset current vs. temperature input offset current ( a) 5 4 3 1 2 0 max4212/3/6/8/20-35 temperature ( c) -25 -50 0 75 50 25 100 input offset voltage vs. temperature input offset voltage (mv) 5.0 4.8 4.6 4.2 4.4 4.0 max4212/3/6/8/20-36 temperature ( c) -25 -50 0 75 50 25 100 voltage swing vs. temperature voltage swing (vp-p) r l = 150 ? to v cc /2 ____________________________typical operating characteristics (continued) (v cc = 5v, v ee = 0, a vcl = 1, r f = 24 ? , r l = 100 ? to v cc /2, t a = +25 c, unless otherwise noted.)
max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable _______________________________________________________________________________________ 9 ______________________________________________________________pin description qsop so qsop so max4218 max4216 so/max MAX4220 max4213 so/max max4212 sot23 enc 2 2 enable amplifier c enb 3 3 enable amplifier b ena 1 1 enable amplifier a en 8 enable amplifier ind+ 14 12 amplifier d noninverting input ind- 15 13 amplifier d inverting input outd 16 14 amplifier d output inc+ 12 12 14 10 amplifier c noninverting input inc- 11 13 15 9 amplifier c inverting input name n.c. out v ee in+ ina- outa v cc in- outc inb+ inb- outb ina+ 8, 9 13 2 1 4 10 5 6 7 3 11 6 7 4 14 10 9 8 5 8, 9 13 6 7 4 16 12 11 10 5 4 2 1 8 5 6 7 3 11 2 1 4 8 5 6 7 3 function 1, 5 no connection. not internally connected. tie to ground or leave open. 1 6 amplifier output pin 2 4 negative power supply or ground (in single-supply operation) 3 3 noninverting input amplifier a inverting input amplifier a output 5 7 positive power supply 4 2 inverting input amplifier c output amplifier b noninverting input amplifier b inverting input amplifier b output amplifier a noninverting input
max4212/max4213/max4216/max4218/MAX4220 _______________detailed description the max4212/max4213/max4216/max4218/MAX4220 are single-supply, rail-to-rail, voltage-feedback ampli- fiers that employ current-feedback techniques to achieve 600v/s slew rates and 300mhz bandwidths. excellent harmonic distortion and differential gain/ phase performance make these amplifiers an ideal choice for a wide variety of video and rf signal- processing applications. the output voltage swing comes to within 50mv of each supply rail. local feedback around the output stage assures low open-loop output impedance to reduce gain sensitivity to load variations. this feedback also produces demand-driven current bias to the output transistors for 100ma drive capability, while constrain- ing total supply c urrent to less than 7ma. the input stage permits common-mode voltages beyond the nega- tive supply and to within 2.25v of the positive supply rail. __________applications information choosing resistor values unity-gain configuration the max4212/max4213/max4216/max4218/MAX4220 are internally compensated for unity gain. when config- ured for unity gain, the devices require a 24 ? resistor (r f ) in series with the feedback path. this resistor improves ac response by reducing the q of the parallel lc circuit formed by the parasitic feedback capaci- tance and inductance. inverting and noninverting configurations select the gain-setting feedback (r f ) and input (r g ) resistor values to fit your application. large resistor val- ues increase voltage noise and interact with the amplifi- er s input and pc board capacitance. this can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. for example, a nonin- verting gain-of-two configuration (r f = r g ) using 1k ? resistors, combined with 1pf of amplifier input capaci- tance and 1pf of pc board capacitance, causes a pole at 159mhz. since this pole is within the amplifier band- width, it jeopardizes stability. reducing the 1k ? resis- tors to 100 ? extends the pole frequency to 1.59ghz, but could limit output swing by adding 200 ? in parallel with the amplifier s load resistor. table 1 shows sug- gested feedback, gain resistors, and bandwidth for several gain values in the configurations shown in figures 1a and 1b. layout and power-supply bypassing these amplifiers operate from a single 3.3v to 11v power supply or from dual supplies to 5.5v. for single-supply operation, bypass v cc to ground with a 0.1f capacitor as close to the pin as possible. if operating with dual sup- plies, bypass each supply with a 0.1f capacitor. miniature, 300mhz, single-supply, rail-to-rail op amps with enable 10 ______________________________________________________________________________________ in r g v out = [1+ (r f / r g )] v in r f r to r tin r o v out in r g v out = -(r f / r g ) v in r f r to r s r tin r o v out figure 1a. noninverting gain configuration figure 1b. inverting gain configuration
maxim recommends using microstrip and stripline tech- niques to obtain full bandwidth. to ensure that the pc board does not degrade the amplifier s performance, design it for a frequency greater than 1ghz. pay care- ful attention to inputs and outputs to avoid large para- sitic capacitance. whether or not you use a constant- impedance board, observe the following guidelines when designing the board: don t use wire-wrap boards because they are too inductive. don t use ic sockets because they increase parasitic capacitance and inductance. use surface-mount instead of through-hole compo- nents for better high-frequency performance. use a pc board with at least two layers; it should be as free from voids as possible. keep signal lines as short and as straight as possi- ble. do not make 90 turns; round all corners. rail-to-rail outputs, ground-sensing input the input common-mode range extends from (v ee - 200mv) to (v cc - 2.25v) with excellent common- mode rejection. beyond this range, the amplifier output is a nonlinear function of the input, but does not under- go phase reversal or latchup. the output swings to within 50mv of either power- supply rail with a 10k ? load. the input ground-sensing and the rail-to-rail output substantially increase the dynamic range. with a symmetric input in a single 5v application, the input can swing 2.95v p-p , and the out- put can swing 4.9v p-p with minimal distortion. enable input and disabled output the enable feature (en_) allows the amplifier to be placed in a low-power, high-output-impedance state. typically, the en_ logic low input current (i il ) is small. however, as the en voltage (v il ) approaches the nega- tive supply rail, i il increases (figure 2). a single resis- tor connected as shown in figure 3 prevents the rise in the logic-low input current. this resistor provides a feedback mechanism that increases v il as the logic input is brought to v ee . figure 4 shows the resulting input current (i il ). when the max4213/max4218 are disabled, the amplifi- er s output impedance is 35k ? . this high resistance and the low 2pf output capacitance make these parts ideal in rf/video multiplexer or switch applications. for larger arrays, pay careful attention to capacitive load- ing. see the output capacitive loading and stability section for more information. max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable ______________________________________________________________________________________ 11 table 1. recommended component values note: r l = r o + r to ; r tin and r to are calculated for 50 ? applications. for 75 ? systems, r to = 75 ? ; calculate r tin from the following equation: r = 75 1- 75 r tin g ? -25 +25 -10 +10 -5 +5 -2 +2 -1 +1 49.9 10 0 50 1200 gain (v/v) 49.9 6 49.9 20 500 49.9 25 0 50 500 49.9 11 49.9 56 500 49.9 33 100 0 100 500 49.9 25 49.9 124 500 49.9 60 62 0 250 500 49.9 105 49.9 500 500 49.9 49.9 r to ( ? ) 90 300 small-signal -3db bandwidth (mhz) 56 49.9 r tin ( ? ) 0 r s ( ? ) component 500 r g ( ? ) 500 24 r f ( ? )
max4212/max4213/max4216/max4218/MAX4220 output capacitive loading and stability the max4212/max4213/max4216/max4218/MAX4220 are optimized for ac performance. they are not designed to drive highly reactive loads, which de- creases phase margin and may produce excessive ringing and oscillation. figure 5 shows a circuit that eliminates this problem. figure 6 is a graph of the opti- mal isolation resistor (r s ) vs. capacitive load. figure 7 shows how a capacitive load causes excessive peak- ing of the amplifier s frequency response if the capaci- tor is not isolated from the amplifier by a resistor. a small isolation resistor (usually 20 ? to 30 ? ) placed before the reactive load prevents ringing and oscilla- tion. at higher capacitive loads, ac performance is controlled by the interaction of the load capacitance and the isolation resistor. figure 8 shows the effect of a 27 ? isolation resistor on closed-loop response. coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. driving back-terminated transmission lines essentially eliminates the line s capacitance. miniature, 300mhz, single-supply, rail-to-rail op amps with enable 12 ______________________________________________________________________________________ out in- en_ in+ 10k ? enable max42_ _ 20 -160 0 50 100 150 300 350 500 -100 -120 0 mv above v ee input current ( a) 200 250 400 450 -60 -140 -20 -40 -80 0 -10 0 50 100 150 300 350 500 -7 -8 -1 mv above v ee input current ( a) 200 250 400 450 -3 -5 -9 -2 -4 -6 figure 2. enable logic-low input current vs. v il figure 4. enable logic-low input current vs. v il with 10k ? series resistor figure 3. circuit to reduce enable logic-low input current
max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable ______________________________________________________________________________________ 13 r g r f r iso 50 ? c l v out v in r tin max42_ _ figure 5. driving a capacitive load through an isolation resistor 30 25 20 5 10 15 0 capacitive load (pf) 50 0 100 200 150 250 isolation resistance, r iso ( ? ) figure 6. capacitive load vs. isolation resistance 6 -4 100k 10m 100m 1m 1g -2 frequency (hz) gian (db) 0 2 4 5 -3 -1 1 3 c l = 10pf c l = 15pf c l = 5pf figure 7. small-signal gain vs. frequency with load capacitance and no isolation resistor 3 -7 100k 10m 100m 1m 1g -5 frequency (hz) gian (db) -3 -1 1 2 -6 -4 -2 0 c l = 68pf r iso = 27 ? c l = 120pf c l = 47pf figure 8. small-signal gain vs. frequency with load capacitance and 27 ? isolation resistor
max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable 14 ______________________________________________________________________________________ top view inb- inb+ v ee 1 2 8 7 v cc outb ina- ina+ outa max/so 3 4 6 5 max4216 14 13 12 11 10 9 8 1 2 3 4 5 6 7 outc inc- inc+ v ee v cc enb enc ena max4218 inb+ inb- outb outa ina- ina+ so 14 13 12 11 10 9 8 1 2 3 4 5 6 7 outd ind- ind+ v ee v cc ina+ ina- outa MAX4220 inc+ inc- outc outb inb- inb+ so 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 outc inc- inc+ v ee inb+ inb- outb n.c. ena enc enb v cc ina+ ina- outa n.c. max4218 qsop 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 outd ind- ind+ v ee inc+ inc- outc n.c. outa ina- ina+ v cc inb+ inb- outb n.c. MAX4220 qsop pin configurations (continued)
max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable ______________________________________________________________________________________ 15 chip information _ordering information (continued) sot-23 5l .eps e 1 1 21-0057 package outline, sot-23, 5l part temp range pin package top mark max4216 esa -40 c to +85 c 8 so max4216eua -40 c to +85 c 8 max max4218 esd -40 c to +85 c 14 so max4218eee -40 c to +85 c 16 qsop MAX4220 esd -40 c to +85 c 14 so MAX4220eee -40 c to +85 c 16 qsop max4212/max4213 transistor count: 95 max4216 transistor count: 190 max4218 transistor count: 299 MAX4220 transistor count: 362 package information (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation, go to www.maxim-ic.com/packages .)
max4212/max4213/max4216/max4218/MAX4220 miniature, 300mhz, single-supply, rail-to-rail op amps with enable 8lumaxd.eps package outline, 8l umax/usop 1 1 21-0036 j rev. document control no. approval proprietary information title: max 0.043 0.006 0.014 0.120 0.120 0.198 0.026 0.007 0.037 0.0207 bsc 0.0256 bsc a2 a1 c e b a l front view side view e h 0.60.1 0.60.1 ? 0.500.1 1 top view d 8 a2 0.030 bottom view 1 6 s b l h e d e c 0 0.010 0.116 0.116 0.188 0.016 0.005 8 4x s inches - a1 a min 0.002 0.95 0.75 0.5250 bsc 0.25 0.36 2.95 3.05 2.95 3.05 4.78 0.41 0.65 bsc 5.03 0.66 6 0 0.13 0.18 max min millimeters -1.10 0.05 0.15 dim qsop.eps maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. 16 ____________________maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 ? 2003 maxim integrated products printed usa is a registered trademark of maxim integrated products. package information (continued) (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation, go to www.maxim-ic.com/packages .)


▲Up To Search▲   

 
Price & Availability of MAX4220

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X